CTFSHOW-funnyrsa & unusualrsa系列

 

funnyrsa1

题目描述

1
2
3
4
5
6
7
8
9
e1 = 14606334023791426
p1 = 121009772735460235364940622989433807619211926015494087453674747614331295040063679722422298286549493698150690694965106103822315378461970129912436074962111424616439032849788953648286506433464358834178903821069564798378666159882090757625817745990230736982709059859613843100974349380542982235135982530318438330859
q1 = 130968576816900149996914427770826228884925960001279609559095138835900329492765336419489982304805369724685145941218640504262821549441728192761733409684831633194346504685627189375724517070780334885673563409259345291959439026700006694655545512308390416859315892447092639503318475587220630455745460309886030186593
c1 = 11402389955595766056824801105373550411371729054679429421548608725777586555536302409478824585455648944737304660137306241012321255955693234304201530700362069004620531537922710568821152217381257446478619320278993539785699090234418603086426252498046106436360959622415398647198014716351359752734123844386459925553497427680448633869522591650121047156082228109421246662020164222925272078687550896012363926358633323439494967417041681357707006545728719651494384317497942177993032739778398001952201667284323691607312819796036779374423837576479275454953999865750584684592993292347483309178232523897058253412878901324740104919248

e2 = 13813369129257838
p2 = 121009772735460235364940622989433807619211926015494087453674747614331295040063679722422298286549493698150690694965106103822315378461970129912436074962111424616439032849788953648286506433464358834178903821069564798378666159882090757625817745990230736982709059859613843100974349380542982235135982530318438330859
q2 = 94582257784130735233174402362819395926641026753071039760251190444144495369829487705195913337502962816079184062352678128843179586054535283861793827497892600954650126991213176547276006780610945133603745974181504975165082485845571788686928859549252522952174376071500707863379238688200493621993937563296490615649
c2 = 7984888899827615209197324489527982755561403577403539988687419233579203660429542197972867526015619223510964699107198708420785278262082902359114040327940253582108364104049849773108799812000586446829979564395322118616382603675257162995702363051699403525169767736410365076696890117813211614468971386159587698853722658492385717150691206731593509168262529568464496911821756352254486299361607604338523750318977620039669792468240086472218586697386948479265417452517073901655900118259488507311321060895347770921790483894095085039802955700146474474606794444308825840221205073230671387989412399673375520605000270180367035526919

解题思路

可以看出p1和p2是同一个数,e1和e2分可以分解成

1
2
e1 = 2 * 7 * 1043309573127959
e2 = 2 * 7 * 986669223518417

直接用下有限域开方

image-20210709101537063

然后记得将中间那个奇怪的东西转换成φ

第一次遇到这道题,主要参考一篇CSDN上的推导,主要是当时e=14试过小指数枚举k,也开不出来就没啥思路了

https://blog.csdn.net/chenzzhenguo/article/details/94339659

现在再观摩一遍又学到了好多,如果不用有限域开14次方的话,由于e=7已经和phi1和phi2都有公因子了,不能继续化简指数,而且经检验,q不满足rabin的条件
$$
q\ mod\ 4=1\notag
$$
不过p没有
$$
p\ mod\ 4=3\notag
$$
所以这位师傅想到了借助中国剩余定理的思路,着实巧妙

为了方便理清思绪,我把上面的脚本和得出来的新c1和c2展示一下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from Crypto.Util.number import *
from gmpy2 import *

e1 = 1043309573127959
p1 = 121009772735460235364940622989433807619211926015494087453674747614331295040063679722422298286549493698150690694965106103822315378461970129912436074962111424616439032849788953648286506433464358834178903821069564798378666159882090757625817745990230736982709059859613843100974349380542982235135982530318438330859
q1 = 130968576816900149996914427770826228884925960001279609559095138835900329492765336419489982304805369724685145941218640504262821549441728192761733409684831633194346504685627189375724517070780334885673563409259345291959439026700006694655545512308390416859315892447092639503318475587220630455745460309886030186593
c1 = 11402389955595766056824801105373550411371729054679429421548608725777586555536302409478824585455648944737304660137306241012321255955693234304201530700362069004620531537922710568821152217381257446478619320278993539785699090234418603086426252498046106436360959622415398647198014716351359752734123844386459925553497427680448633869522591650121047156082228109421246662020164222925272078687550896012363926358633323439494967417041681357707006545728719651494384317497942177993032739778398001952201667284323691607312819796036779374423837576479275454953999865750584684592993292347483309178232523897058253412878901324740104919248

e2 = 986669223518417
p2 = 121009772735460235364940622989433807619211926015494087453674747614331295040063679722422298286549493698150690694965106103822315378461970129912436074962111424616439032849788953648286506433464358834178903821069564798378666159882090757625817745990230736982709059859613843100974349380542982235135982530318438330859
q2 = 94582257784130735233174402362819395926641026753071039760251190444144495369829487705195913337502962816079184062352678128843179586054535283861793827497892600954650126991213176547276006780610945133603745974181504975165082485845571788686928859549252522952174376071500707863379238688200493621993937563296490615649
c2 = 7984888899827615209197324489527982755561403577403539988687419233579203660429542197972867526015619223510964699107198708420785278262082902359114040327940253582108364104049849773108799812000586446829979564395322118616382603675257162995702363051699403525169767736410365076696890117813211614468971386159587698853722658492385717150691206731593509168262529568464496911821756352254486299361607604338523750318977620039669792468240086472218586697386948479265417452517073901655900118259488507311321060895347770921790483894095085039802955700146474474606794444308825840221205073230671387989412399673375520605000270180367035526919

phi1 = (p1-1)*(q1-1)
phi2 = (p2-1)*(q2-1)

n1 = p1*q1
n2 = p2*q2

d1 = invert(e1, phi1)
d2 = invert(e2, phi2)

c1_14 = pow(c1, d1, n1)
c2_14 = pow(c2, d2, n2)

print(c1_14)
print(c2_14)

首先用CRT将$m^{14}$转换成在模q1q2下,那个师傅还把p加上了,其实没有必要,选两个就好了
$$
m^{14}\equiv c_1\ (mod\ q_1)\notag
$$

$$
m^{14}\equiv c_2\ (mod\ q_2)\notag
$$

解出来的解我们设为c3,将问题转换成新的rsa问题
$$
m^{14}\equiv c_3\ (mod\ q_1\cdot q_2)\notag
$$
在如今的局势下,我们可以用上面的思路,先继续化简e,因为发现新的phi和7是互素的;出来的c很小,用小指数攻击就解出来
$$
c^2\equiv m\ (mod\ n)\notag
$$
注意这里可不能用rabin,因为上面就说过,q是不满足rabin条件的,平方根算法倒可以试试

1
2
3
4
5
6
7
8
9
10
from Crypto.Util.number import *
from sympy.ntheory.residue_ntheory import nthroot_mod

c = 1468508928650711840448592864366550012730179472363882262465351327446412035872207980397128114769992338577161
p = 130968576816900149996914427770826228884925960001279609559095138835900329492765336419489982304805369724685145941218640504262821549441728192761733409684831633194346504685627189375724517070780334885673563409259345291959439026700006694655545512308390416859315892447092639503318475587220630455745460309886030186593
q = 94582257784130735233174402362819395926641026753071039760251190444144495369829487705195913337502962816079184062352678128843179586054535283861793827497892600954650126991213176547276006780610945133603745974181504975165082485845571788686928859549252522952174376071500707863379238688200493621993937563296490615649
e = 2
n = p*q

print(long_to_bytes(nthroot_mod(c, 2, p)))

funnyrsa2

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from Crypto.Util.number import getPrime
import libnum
from secret import flag

e = 0x10001
p = getPrime(80)
q = getPrime(80)
r = getPrime(80)
n = p * q * r
m = libnum.s2n(flag)
c = pow(m,e,n)
print("n =", n)
print("c =", c)
# n = 897607935780955837078784515115186203180822213482989041398073067996023639
# c = 490571531583321382715358426750276448536961994273309958885670149895389968

解题脚本

1
2
3
from flag import flag
print(flag)
# flag{what_that_fvck_r}

funnyrsa3

题目描述

1
2
3
4
e = 65537
n = 13851998696110232034312408768370264747862778787235362033287301947690834384177869107768578977872169953363148442670412868565346964490724532894099772144625540138618913694240688555684873934424471837897053658485573395777349902581306875149677867098014969597240339327588421766510008083189109825385296069501377605893298996953970043168244444585264894721914216744153344106498382558756181912535774309211692338879110643793628550244212618635476290699881188640645260075209594318725693972840846967120418641315829098807385382509029722923894508557890331485536938749583463709142484622852210528766911899504093351926912519458381934550361
dp = 100611735902103791101540576986246738909129436434351921338402204616138072968334504710528544150282236463859239501881283845616704984276951309172293190252510177093383836388627040387414351112878231476909883325883401542820439430154583554163420769232994455628864269732485342860663552714235811175102557578574454173473
c = 6181444980714386809771037400474840421684417066099228619603249443862056564342775884427843519992558503521271217237572084931179577274213056759651748072521423406391343404390036640425926587772914253834826777952428924120724879097154106281898045222573790203042535146780386650453819006195025203611969467741808115336980555931965932953399428393416196507391201647015490298928857521725626891994892890499900822051002774649242597456942480104711177604984775375394980504583557491508969320498603227402590571065045541654263605281038512927133012338467311855856106905424708532806690350246294477230699496179884682385040569548652234893413

解题思路

dp泄漏攻击

unusualrsa1

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# ********************
# @Author: Lazzaro
# ********************

from Crypto.Util.number import getPrime,bytes_to_long,long_to_bytes
from random import randint
from secret import flag

p = getPrime(1024)
q = getPrime(1024)
n = p*q
print(n)

m = bytes_to_long(long_to_bytes(randint(0,30))*208+flag)
assert(m.bit_length()==2044)
print((m>>315)<<315)
c = pow(m,3,n)
print(c)

#14113948189208713011909396304970377626324044633561155020366406284451614054260708934598840781397326960921718892801653205159753091559901114082556464576477585198060530094478860626532455065960136263963965819002575418616768412539016154873800614138683106056209070597212668250136909436974469812231498651367459717175769611385545792201291192023843434476550550829737236225181770896867698281325858412643953550465132756142888893550007041167700300621499970661661288422834479368072744930285128061160879720771910458653611076539210357701565156322144818787619821653007453741709031635862923191561438148729294430924288173571196757351837
#1520800285708753284739523608878585974609134243280728660335545667177630830064371336150456537012842986526527904043383436211487979254140749228004148347597566264500276581990635110200009305900689510908049771218073767918907869112593870878204145615928290375086195098919355531430003571366638390993296583488184959318678321571278510231561645872308920917404996519309473979203661442792048291421574603018835698487725981963573816645574675640357569465990665689618997534740389987351864738104038598104713275375385003471306823348792559733332094774873827383320058176803218213042061965933143968710199376164960850951030741280074168795136
#6635663565033382363211849843446648120305449056573116171933923595209656581213410699649926913276685818674688954045817246263487415328838542489103709103428412175252447323358040041217431171817865818374522191881448865227314554997131690963910348820833080760482835650538394814181656599175839964284713498394589419605748581347163389157651739759144560719049281761889094518791244702056048080280278984031050608249265997808217512349309696532160108250480622956599732443714546043439089844571655280770141647694859907985919056009576606333143546094941635324929407538860140272562570973340199814409134962729885962133342668270226853146819

解题思路

已知m高位,用CopperSmith已知明文高位攻击

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# sage
from Crypto.Util.number import *

n = 14113948189208713011909396304970377626324044633561155020366406284451614054260708934598840781397326960921718892801653205159753091559901114082556464576477585198060530094478860626532455065960136263963965819002575418616768412539016154873800614138683106056209070597212668250136909436974469812231498651367459717175769611385545792201291192023843434476550550829737236225181770896867698281325858412643953550465132756142888893550007041167700300621499970661661288422834479368072744930285128061160879720771910458653611076539210357701565156322144818787619821653007453741709031635862923191561438148729294430924288173571196757351837
mbar = 1520800285708753284739523608878585974609134243280728660335545667177630830064371336150456537012842986526527904043383436211487979254140749228004148347597566264500276581990635110200009305900689510908049771218073767918907869112593870878204145615928290375086195098919355531430003571366638390993296583488184959318678321571278510231561645872308920917404996519309473979203661442792048291421574603018835698487725981963573816645574675640357569465990665689618997534740389987351864738104038598104713275375385003471306823348792559733332094774873827383320058176803218213042061965933143968710199376164960850951030741280074168795136
c = 6635663565033382363211849843446648120305449056573116171933923595209656581213410699649926913276685818674688954045817246263487415328838542489103709103428412175252447323358040041217431171817865818374522191881448865227314554997131690963910348820833080760482835650538394814181656599175839964284713498394589419605748581347163389157651739759144560719049281761889094518791244702056048080280278984031050608249265997808217512349309696532160108250480622956599732443714546043439089844571655280770141647694859907985919056009576606333143546094941635324929407538860140272562570973340199814409134962729885962133342668270226853146819
e = 3
kbits = 315

PR.<x>=PolynomialRing(Zmod(n))
f = (mbar + x) ^ e - c
x0 = f.small_roots(X=2^kbits, beta=1)[0] # find root < 2^kbits with factor = n

print(long_to_bytes(mbar + x0))

原理

先搞清楚题目意思;下面这个print操作显然是将m的低315位变成0

1
print((m>>315)<<315)

我们直接将m转变成字节,得到

1
b'\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0cflag{r54X\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'

显然前面208个\x0c就是随机生成的填充,还有一点flag的头部信息,剩下就全部都是0了

CopperSmith已知明文高位攻击

而CopperSmith已知明文高位攻击的模式就是,

当$|x|\leq N^{\frac{1}{e}}$,其中$m=mbar+x$时,下列关于x的方程
$$
c=m^e\ mod\ n=(mbar+x)^e\ mod\ n,其中mbar=(m>>kbits)<<kbits\notag
$$
有解

首先我们验证下,条件是否满足;x是315位的,$N^\frac{1}{e}$约有683,条件成立

image-20210708112626326

所以显然对于已知明文高位的攻击,还需要e比较小这个条件,不然e=65537明显解不出来

然后看代码理解;主要的是用到了格,求小根这一类的东西。先构造好上面的方程

1
f = (mbar + x) ^ e - c

然后直接small_roots,设置一下参数。但是更多的也不懂了

unusualrsa2

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# ********************
# @Author: Lazzaro
# ********************

from Crypto.Util.number import getPrime,bytes_to_long,long_to_bytes
from functools import reduce
from secret import flag, x, y

m = bytes_to_long(flag)
p = getPrime(1024)
q = getPrime(1024)
n = p*q
print(n)

assert(reduce(lambda x,y:x&y,[(i-5)*i+6==0 for i in x]))
assert(reduce(lambda x,y:x&y,[(j-15)*j+44==0 for j in y]))

print(pow(reduce(lambda x,y:x*m+y,x),17,n))
print(pow(reduce(lambda x,y:x*m+y,y),17,n))

#23772599983135215481563178266884362291876571759991288577057472733374903836591330410574958472090396886895304944176208711481780781286891334062794555288959410390926474473859289842654809538435377431088422352076225067494924657598298955407771484146155998883073439266427190212827600119365643065276814044272790573450938596830336430371987561905132579730619341196199420897034988685012777895002554746080384319298123154671447844799088258541911028041717897434816921424155687677867019535399434825468160227242441375503664915265223696139025407768146464383537556265875013085702422829200814612395116961538432886116917063119749068212699
#10900151504654409767059699202929100225155892269473271859207513720755903691031362539478242920144073599515746938827937863835169270383721094542639011665235593065932998091574636525973099426040452626893461449084383663453549354608769727777329036059746386523843912382289597182615339786437186169811342356085836838520978047561127661777189045888648773949147220411427306098338616422692914110656004863767719312410906124366000507952960331116878197129010412361636679449281808407214524741732730279777729251515759320442591663641984363061618865267606007355576230009922421807527598213455112981354590909603317525854070358390622096569841
#17298679220717326374674940612143058330715465693318467692839033642321129433471254547497087746971317567301086124779289015934582615377165560688447452762043163082394944604062014490446763247008217251611443338103074143809936437694543761369945095202092750900940979469994907399829695696313513303922266742415376818434932335640062684245008822643258497589196668426788916969378417960200705779461808292296450298558001909603602502604228973101048082095642290047196235959438278631661658312398313171590515776453711432353011579809351076532129444735206408591345372296372378396539831385036814349328459266432393612919118094115543053115450

解题思路

今年过年的时候做的,当时也写了WP。主要分两步吧,先求出x和y

问题是x和y不一定是只有两个元素,为什么这样还可以做?

我们再来分析一下,assert就是条件。首先lambda匿名函数里的x和y并非题目里的x和y,参数罢了;其次这个列表中的元素是True和False,对于secret中的x,只有所有的元素都满足(i-5)*i+6==0这个等式,列表中的所有元素才都是Ture,也只有这样用reduce不断迭代套用x&y最后的返回值才会是True,整个assert才不会报错。y同理

1
2
assert(reduce(lambda x,y:x&y,[(i-5)*i+6==0 for i in x]))
assert(reduce(lambda x,y:x&y,[(j-15)*j+44==0 for j in y]))

所以x和y里面可以有多个元素,不止两个,但比如x,里面就能出现2或者3,管你是[2,3,3,3],还是[2,3,3,3,2,3,3,3]。

至于下面一个多项式,正如那位师傅说的那样,理论上确实,没有证据这不是一个关于m的多项式,而且系数只有2或3

1
2
print(pow(reduce(lambda x,y:x*m+y,x),17,n))
print(pow(reduce(lambda x,y:x*m+y,y),17,n))

总之之前的解法,DDDD,没有比我更懂CTF签到~,就当x=[2,3],y=[4,11]了,别的情况也没有更多的条件可以明确指明

所以我们得到了
$$
c=(2m+3)^{17}\ mod\ n\notag
$$

$$
c=(4m+11)^{17}\ mod\ n\notag
$$

相当于换一下变量
$$
c=x^{17}\ mod\ n\notag
$$

$$
c=(2x+5)^{17}\ mod\ n\notag
$$
我们可以很明显地看到了其中蕴含的线性关系

Coppersmith’s Short-pad Attack & Related Message Attack(Franklin-Reiter攻击)

从la佬的博客中据悉,所谓的padding过短,就是对应多项式的根会过小;提供了两个脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#脚本1
#Sage
import binascii
def attack(c1, c2, n, e):
PR.<x>=PolynomialRing(Zmod(n))
# replace a,b,c,d
g1 = (a*x+b)^e - c1
g2 = (c*x+d)^e - c2

def gcd(g1, g2):
while g2:
g1, g2 = g2, g1 % g2
return g1.monic()
return -gcd(g1, g2)[0]
c1 =
c2 =
n =
e =
m1 = attack(c1, c2, n, e)
print(binascii.unhexlify("%x" % int(m1)))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#脚本2
#Sage
def short_pad_attack(c1, c2, e, n):
PRxy.<x,y> = PolynomialRing(Zmod(n))
PRx.<xn> = PolynomialRing(Zmod(n))
PRZZ.<xz,yz> = PolynomialRing(Zmod(n))
g1 = x^e - c1
g2 = (x+y)^e - c2
q1 = g1.change_ring(PRZZ)
q2 = g2.change_ring(PRZZ)
h = q2.resultant(q1)
h = h.univariate_polynomial()
h = h.change_ring(PRx).subs(y=xn)
h = h.monic()
kbits = n.nbits()//(2*e*e)
diff = h.small_roots(X=2^kbits, beta=0.4)[0] # find root < 2^kbits with factor >= n^0.4
return diff
def related_message_attack(c1, c2, diff, e, n):
PRx.<x> = PolynomialRing(Zmod(n))
g1 = x^e - c1
g2 = (x+diff)^e - c2
def gcd(g1, g2):
while g2:
g1, g2 = g2, g1 % g2
return g1.monic()
return -gcd(g1, g2)[0]
if __name__ == '__main__':
n =
e =
c1 =
c2 =
diff = short_pad_attack(c1, c2, e, n)
print("difference of two messages is %d" % diff)
m1 = related_message_attack(c1, c2, diff, e, n)
print("m1:", m1)
print("m2:", m1 + diff)

这道题我们魔改脚本1就能出来

unusualrsa3

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
# ********************
# @Author: Lazzaro
# ********************

p:
2470567871

N:
1932231392*x^255 + 1432733708*x^254 + 1270867914*x^253 + 1573324635*x^252 + 2378103997*x^251 + 820889786*x^250 + 762279735*x^249 + 1378353578*x^248 + 1226179520*x^247 + 657116276*x^246 + 1264717357*x^245 + 1015587392*x^244 + 849699356*x^243 + 1509168990*x^242 + 2407367106*x^241 + 873379233*x^240 + 2391647981*x^239 + 517715639*x^238 + 828941376*x^237 + 843708018*x^236 + 1526075137*x^235 + 1499291590*x^234 + 235611028*x^233 + 19615265*x^232 + 53338886*x^231 + 434434839*x^230 + 902171938*x^229 + 516444143*x^228 + 1984443642*x^227 + 966493372*x^226 + 1166227650*x^225 + 1824442929*x^224 + 930231465*x^223 + 1664522302*x^222 + 1067203343*x^221 + 28569139*x^220 + 2327926559*x^219 + 899788156*x^218 + 296985783*x^217 + 1144578716*x^216 + 340677494*x^215 + 254306901*x^214 + 766641243*x^213 + 1882320336*x^212 + 2139903463*x^211 + 1904225023*x^210 + 475412928*x^209 + 127723603*x^208 + 2015416361*x^207 + 1500078813*x^206 + 1845826007*x^205 + 797486240*x^204 + 85924125*x^203 + 1921772796*x^202 + 1322682658*x^201 + 2372929383*x^200 + 1323964787*x^199 + 1302258424*x^198 + 271875267*x^197 + 1297768962*x^196 + 2147341770*x^195 + 1665066191*x^194 + 2342921569*x^193 + 1450622685*x^192 + 1453466049*x^191 + 1105227173*x^190 + 2357717379*x^189 + 1044263540*x^188 + 697816284*x^187 + 647124526*x^186 + 1414769298*x^185 + 657373752*x^184 + 91863906*x^183 + 1095083181*x^182 + 658171402*x^181 + 75339882*x^180 + 2216678027*x^179 + 2208320155*x^178 + 1351845267*x^177 + 1740451894*x^176 + 1302531891*x^175 + 320751753*x^174 + 1303477598*x^173 + 783321123*x^172 + 1400145206*x^171 + 1379768234*x^170 + 1191445903*x^169 + 946530449*x^168 + 2008674144*x^167 + 2247371104*x^166 + 1267042416*x^165 + 1795774455*x^164 + 1976911493*x^163 + 167037165*x^162 + 1848717750*x^161 + 573072954*x^160 + 1126046031*x^159 + 376257986*x^158 + 1001726783*x^157 + 2250967824*x^156 + 2339380314*x^155 + 571922874*x^154 + 961000788*x^153 + 306686020*x^152 + 80717392*x^151 + 2454799241*x^150 + 1005427673*x^149 + 1032257735*x^148 + 593980163*x^147 + 1656568780*x^146 + 1865541316*x^145 + 2003844061*x^144 + 1265566902*x^143 + 573548790*x^142 + 494063408*x^141 + 1722266624*x^140 + 938551278*x^139 + 2284832499*x^138 + 597191613*x^137 + 476121126*x^136 + 1237943942*x^135 + 275861976*x^134 + 1603993606*x^133 + 1895285286*x^132 + 589034062*x^131 + 713986937*x^130 + 1206118526*x^129 + 311679750*x^128 + 1989860861*x^127 + 1551409650*x^126 + 2188452501*x^125 + 1175930901*x^124 + 1991529213*x^123 + 2019090583*x^122 + 215965300*x^121 + 532432639*x^120 + 1148806816*x^119 + 493362403*x^118 + 2166920790*x^117 + 185609624*x^116 + 184370704*x^115 + 2141702861*x^114 + 223551915*x^113 + 298497455*x^112 + 722376028*x^111 + 678813029*x^110 + 915121681*x^109 + 1107871854*x^108 + 1369194845*x^107 + 328165402*x^106 + 1792110161*x^105 + 798151427*x^104 + 954952187*x^103 + 471555401*x^102 + 68969853*x^101 + 453598910*x^100 + 2458706380*x^99 + 889221741*x^98 + 320515821*x^97 + 1549538476*x^96 + 909607400*x^95 + 499973742*x^94 + 552728308*x^93 + 1538610725*x^92 + 186272117*x^91 + 862153635*x^90 + 981463824*x^89 + 2400233482*x^88 + 1742475067*x^87 + 437801940*x^86 + 1504315277*x^85 + 1756497351*x^84 + 197089583*x^83 + 2082285292*x^82 + 109369793*x^81 + 2197572728*x^80 + 107235697*x^79 + 567322310*x^78 + 1755205142*x^77 + 1089091449*x^76 + 1993836978*x^75 + 2393709429*x^74 + 170647828*x^73 + 1205814501*x^72 + 2444570340*x^71 + 328372190*x^70 + 1929704306*x^69 + 717796715*x^68 + 1057597610*x^67 + 482243092*x^66 + 277530014*x^65 + 2393168828*x^64 + 12380707*x^63 + 1108646500*x^62 + 637721571*x^61 + 604983755*x^60 + 1142068056*x^59 + 1911643955*x^58 + 1713852330*x^57 + 1757273231*x^56 + 1778819295*x^55 + 957146826*x^54 + 900005615*x^53 + 521467961*x^52 + 1255707235*x^51 + 861871574*x^50 + 397953653*x^49 + 1259753202*x^48 + 471431762*x^47 + 1245956917*x^46 + 1688297180*x^45 + 1536178591*x^44 + 1833258462*x^43 + 1369087493*x^42 + 459426544*x^41 + 418389643*x^40 + 1800239647*x^39 + 2467433889*x^38 + 477713059*x^37 + 1898813986*x^36 + 2202042708*x^35 + 894088738*x^34 + 1204601190*x^33 + 1592921228*x^32 + 2234027582*x^31 + 1308900201*x^30 + 461430959*x^29 + 718926726*x^28 + 2081988029*x^27 + 1337342428*x^26 + 2039153142*x^25 + 1364177470*x^24 + 613659517*x^23 + 853968854*x^22 + 1013582418*x^21 + 1167857934*x^20 + 2014147362*x^19 + 1083466865*x^18 + 1091690302*x^17 + 302196939*x^16 + 1946675573*x^15 + 2450124113*x^14 + 1199066291*x^13 + 401889502*x^12 + 712045611*x^11 + 1850096904*x^10 + 1808400208*x^9 + 1567687877*x^8 + 2013445952*x^7 + 2435360770*x^6 + 2414019676*x^5 + 2277377050*x^4 + 2148341337*x^3 + 1073721716*x^2 + 1045363399*x + 1809685811

m^0x10001%N:
922927962*x^254 + 1141958714*x^253 + 295409606*x^252 + 1197491798*x^251 + 2463440866*x^250 + 1671460946*x^249 + 967543123*x^248 + 119796323*x^247 + 1172760592*x^246 + 770640267*x^245 + 1093816376*x^244 + 196379610*x^243 + 2205270506*x^242 + 459693142*x^241 + 829093322*x^240 + 816440689*x^239 + 648546871*x^238 + 1533372161*x^237 + 1349964227*x^236 + 2132166634*x^235 + 403690250*x^234 + 835793319*x^233 + 2056945807*x^232 + 480459588*x^231 + 1401028924*x^230 + 2231055325*x^229 + 1716893325*x^228 + 16299164*x^227 + 1125072063*x^226 + 1903340994*x^225 + 1372971897*x^224 + 242927971*x^223 + 711296789*x^222 + 535407256*x^221 + 976773179*x^220 + 533569974*x^219 + 501041034*x^218 + 326232105*x^217 + 2248775507*x^216 + 1010397596*x^215 + 1641864795*x^214 + 1365178317*x^213 + 1038477612*x^212 + 2201213637*x^211 + 760847531*x^210 + 2072085932*x^209 + 168159257*x^208 + 70202009*x^207 + 1193933930*x^206 + 1559162272*x^205 + 1380642174*x^204 + 1296625644*x^203 + 1338288152*x^202 + 843839510*x^201 + 460174838*x^200 + 660412151*x^199 + 716865491*x^198 + 772161222*x^197 + 924177515*x^196 + 1372790342*x^195 + 320044037*x^194 + 117027412*x^193 + 814803809*x^192 + 1175035545*x^191 + 244769161*x^190 + 2116927976*x^189 + 617780431*x^188 + 342577832*x^187 + 356586691*x^186 + 695795444*x^185 + 281750528*x^184 + 133432552*x^183 + 741747447*x^182 + 2138036298*x^181 + 524386605*x^180 + 1231287380*x^179 + 1246706891*x^178 + 69277523*x^177 + 2124927225*x^176 + 2334697345*x^175 + 1769733543*x^174 + 2248037872*x^173 + 1899902290*x^172 + 409421149*x^171 + 1223261878*x^170 + 666594221*x^169 + 1795456341*x^168 + 406003299*x^167 + 992699270*x^166 + 2201384104*x^165 + 907692883*x^164 + 1667882231*x^163 + 1414341647*x^162 + 1592159752*x^161 + 28054099*x^160 + 2184618098*x^159 + 2047102725*x^158 + 103202495*x^157 + 1803852525*x^156 + 446464179*x^155 + 909116906*x^154 + 1541693644*x^153 + 166545130*x^152 + 2283548843*x^151 + 2348768005*x^150 + 71682607*x^149 + 484339546*x^148 + 669511666*x^147 + 2110974006*x^146 + 1634563992*x^145 + 1810433926*x^144 + 2388805064*x^143 + 1200258695*x^142 + 1555191384*x^141 + 363842947*x^140 + 1105757887*x^139 + 402111289*x^138 + 361094351*x^137 + 1788238752*x^136 + 2017677334*x^135 + 1506224550*x^134 + 648916609*x^133 + 2008973424*x^132 + 2452922307*x^131 + 1446527028*x^130 + 29659632*x^129 + 627390142*x^128 + 1695661760*x^127 + 734686497*x^126 + 227059690*x^125 + 1219692361*x^124 + 635166359*x^123 + 428703291*x^122 + 2334823064*x^121 + 204888978*x^120 + 1694957361*x^119 + 94211180*x^118 + 2207723563*x^117 + 872340606*x^116 + 46197669*x^115 + 710312088*x^114 + 305132032*x^113 + 1621042631*x^112 + 2023404084*x^111 + 2169254305*x^110 + 463525650*x^109 + 2349964255*x^108 + 626689949*x^107 + 2072533779*x^106 + 177264308*x^105 + 153948342*x^104 + 1992646054*x^103 + 2379817214*x^102 + 1396334187*x^101 + 2254165812*x^100 + 1300455472*x^99 + 2396842759*x^98 + 2398953180*x^97 + 88249450*x^96 + 1726340322*x^95 + 2004986735*x^94 + 2446249940*x^93 + 520126803*x^92 + 821544954*x^91 + 1177737015*x^90 + 676286546*x^89 + 1519043368*x^88 + 224894464*x^87 + 1742023262*x^86 + 142627164*x^85 + 1427710141*x^84 + 1504189919*x^83 + 688315682*x^82 + 1397842239*x^81 + 435187331*x^80 + 433176780*x^79 + 454834357*x^78 + 1046713282*x^77 + 1208458516*x^76 + 811240741*x^75 + 151611952*x^74 + 164192249*x^73 + 353336244*x^72 + 1779538914*x^71 + 1489144873*x^70 + 213140082*x^69 + 1874778522*x^68 + 908618863*x^67 + 1058334731*x^66 + 1706255211*x^65 + 708134837*x^64 + 1382118347*x^63 + 2111915733*x^62 + 1273497300*x^61 + 368639880*x^60 + 1652005004*x^59 + 1977610754*x^58 + 1412680185*x^57 + 2312775720*x^56 + 59793381*x^55 + 1345145822*x^54 + 627534850*x^53 + 2159477761*x^52 + 10450988*x^51 + 1479007796*x^50 + 2082579205*x^49 + 1158447154*x^48 + 126359830*x^47 + 393411272*x^46 + 2343384236*x^45 + 2191577465*x^44 + 1281188680*x^43 + 230049708*x^42 + 539600199*x^41 + 1711135601*x^40 + 1659775448*x^39 + 1716176055*x^38 + 904363231*x^37 + 2385749710*x^36 + 567278351*x^35 + 404199078*x^34 + 372670353*x^33 + 1286079784*x^32 + 1744355671*x^31 + 2316856064*x^30 + 2106475476*x^29 + 614988454*x^28 + 2149964943*x^27 + 1065233185*x^26 + 188130174*x^25 + 540415659*x^24 + 1031409799*x^23 + 1067085678*x^22 + 1005161755*x^21 + 249654085*x^20 + 1816791634*x^19 + 1437500292*x^18 + 448596413*x^17 + 2397497659*x^16 + 2353732701*x^15 + 2068949189*x^14 + 1826419168*x^13 + 1265366199*x^12 + 547031306*x^11 + 1016962374*x^10 + 160089486*x^9 + 2264803979*x^8 + 1081806194*x^7 + 824215340*x^6 + 497731793*x^5 + 45017166*x^4 + 317548920*x^3 + 1391127733*x^2 + 1752881284*x + 1290424106

解题思路

多项式rsa,按道理,给了p应该就好分解了,但它是多项式rsa

参考la佬的博客,有几点需要知道

  1. 一般的数论知识可以迁移到群论上, 比如欧拉定理
  2. 对于欧拉函数$\varphi$来说,在数论中$\varphi (x)=x-1$(x是素数),但是对于不可约多项式$g(x)$,$\varphi(g(x))=p^n-1$(p为$GF(p)$的模,n为多项式最高项次数)。这里我暂且把$GF(p)$当成$Z_p^*$了

看着代码理解吧

解题代码

首先构造以p为模的,关于x的多项式,这就相当于rsa中的p了

1
R.<x> = PolynomialRing(GF(p))

然后下面这个我不知道什么意思

1
S.<x> = R.quotient(N)

接下来就是熟悉的rsa步骤,分解pq,通过上面那个求欧拉函数的公式求phi,从而求得d

1
2
3
4
5
6
7
8
9
P, Q = N.factor()
P, Q = P[0], Q[0]
phi = (p ** P.degree() - 1) * (p ** Q.degree() - 1)
e = 0x10001
d = inverse_mod(e, phi)

m = c ^ d
m = "".join([chr(c) for c in m.list()])
print(m)

unusuarsa4

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# ********************
# @Author: Lazzaro
# ********************

from Crypto.Util.number import getPrime,bytes_to_long
from gmpy2 import invert
from secret import flag

m = bytes_to_long(flag)
p = getPrime(1024)
q = getPrime(1024)
n = p*q
print(invert(q,p))

e = 0x10001
d = invert(e,(p-1)*(q-1))
print(d)

c = pow(m,e,n)
print(c)


q_1 = 113350138578125471637271827037682321496361317426731366252238155037440385105997423113671392038498349668206564266165641194668802966439465128197299073392773586475372002967691512324151673246253769186679521811837698540632534357656221715752733588763108463093085549826122278822507051740839450621887847679420115044512
d = 27451162557471435115589774083548548295656504741540442329428952622804866596982747294930359990602468139076296433114830591568558281638895221175730257057177963017177029796952153436494826699802526267315286199047856818119832831065330607262567182123834935483241720327760312585050990828017966534872294866865933062292893033455722786996125448961180665396831710915882697366767203858387536850040283296013681157070419459208544201363726008380145444214578735817521392863391376821427153094146080055636026442795625833039248405951946367504865008639190248509000950429593990524808051779361516918410348680313371657111798761410501793645137
c = 619543409290228183446186073184791934402487500047968659800765382797769750763696880547221266055431306972840980865602729031475343233357485820872268765911041297456664938715949124290204230537793877747551374176167292845717246943780371146830637073310108630812389581197831196039107931968703635129091224513813241403591357678410312272233389708366642638825455844282490676862737715585788829936919637988039113463707959069907015464745700766013573282604376277598510224455044288896809217461295080140187509519005245601483583507547733673523120385089098002298314719617693895392148294399937798485146568296114338393548124451378170302291

两条hint

unusualrsa4hint1

unusualrsa4hint2

解题思路

题目很简介,把d告诉我们,但是没告诉n

可以想到d泄露攻击;可惜d泄露是分解n用的。但知道

$$
q_1\times q\equiv\ 1(mod\ p)\notag
$$
第一个hint可以将那个式子化简
$$
q_1\times \varphi \equiv (q_1-1)\ mod\ p\notag
$$
这一步比较简单,有手就行,接下里有点难想;移位一下上式得到
$$
q1\times \varphi-q_1+1\equiv 0\ mod\ p\notag
$$
即,$q_1\times \varphi-q_1+1$是p的倍数

令$k_p=q_1\cdot\varphi-q_1+1$,则对任意的g,$gcd(g,p)=1$,有
$$
g^\varphi \equiv1\ mod\ p\Rightarrow (g^\varphi\ mod\ k_p) \equiv1\ mod\ p\notag
$$
这一步是由第二个hint的第二点得来的,因为p是kp的因子

接下来就容易了

脚本编写

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from Crypto.Util.number import *
from gmpy2 import *
from itertools import *

q_1 = 113350138578125471637271827037682321496361317426731366252238155037440385105997423113671392038498349668206564266165641194668802966439465128197299073392773586475372002967691512324151673246253769186679521811837698540632534357656221715752733588763108463093085549826122278822507051740839450621887847679420115044512
d = 27451162557471435115589774083548548295656504741540442329428952622804866596982747294930359990602468139076296433114830591568558281638895221175730257057177963017177029796952153436494826699802526267315286199047856818119832831065330607262567182123834935483241720327760312585050990828017966534872294866865933062292893033455722786996125448961180665396831710915882697366767203858387536850040283296013681157070419459208544201363726008380145444214578735817521392863391376821427153094146080055636026442795625833039248405951946367504865008639190248509000950429593990524808051779361516918410348680313371657111798761410501793645137
c = 619543409290228183446186073184791934402487500047968659800765382797769750763696880547221266055431306972840980865602729031475343233357485820872268765911041297456664938715949124290204230537793877747551374176167292845717246943780371146830637073310108630812389581197831196039107931968703635129091224513813241403591357678410312272233389708366642638825455844282490676862737715585788829936919637988039113463707959069907015464745700766013573282604376277598510224455044288896809217461295080140187509519005245601483583507547733673523120385089098002298314719617693895392148294399937798485146568296114338393548124451378170302291
e = 0x10001

for k in range(1, e):
# 枚举phi
t = e * d - 1
if t % k == 0:
phi = t // k
kp = q_1 * phi - q_1 + 1
x1 = pow(3, phi, kp) - 1
x2 = pow(5, phi, kp) - 1
x = gcd(x1, x2)
if x.bit_length() == 1024:
p = x
q = invert(q_1, p)
n, phi = p*q, (p-1)*(q-1)
assert d == invert(e, phi)
m = pow(c, d, n)
print(long_to_bytes(m))
break

我看着ctfshowwp上大佬写的,我直接用3和5作为那个质数了,理论上应该选任意两个都可以的吧

unusualrsa5

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# ********************
# @Author: Lazzaro
# ********************

from Crypto.Util.number import bytes_to_long
from secret import flag

e = 0x14
p = 733089589724903586073820965792963746076789390539824437962807679954808310072656817423828613938510684864567664345751164944269489647964227519307980688068059059377123391499328155025962198363435968318689113750910755244276996554328840879221120846257832190569086861774466785101694608744384540722995426474322431441
q = 771182695213910447650732428220054698293987458796864628535794956332865106301119308051373568460701145677164052375651484670636989109023957702790185901445649197004100341656188532246838220216919835415376078688888076677350412398198442910825884505318258393640994788407100699355386681624118606588957344077387058721
n = p*q

m = bytes_to_long(flag)
c = pow(m,e,n)
print(c)


#406314720119562590605554101860453913891646775958515375190169046313074168423687276987576196367702523895650602252851191274766072774312855212771035294337840170341052016067631007495713764510925931612800335613551752201920460877432379214684677593342046715833439574705829048358675771542989832566579493199671622475225225451781214904100440695928239014046619329247750637911015313431804069312072581674845078940868349474663382442540424342613429896445329365750444298236684237769335405534090013035238333534521759502103604033307768304224154383880727399879024077733935062478113298538634071453067782212909271392163928445051705642

放了一个hint

unusualrsa5hint

解题思路

有限域开方

1
f.roots()

其实有限域开方和rabin挺像,一个可以开多次,一个只能开二次

以模p下的为例

1
2
3
4
R.<x> = Zmod(p)[]
f = x ^ e - c
f = f.monic()
res1 = f.roots()

求出来的解(可能有多个,因为多项式的解嘛),然后继续开,可能一次开的次数不能太大,不然时间会很慢,然后用中国剩余定理,因为求出来的解都是在模各自模数下的

la佬yyds

image-20210708203043872

看看la佬推荐的两道同类型的题目

De1CTF2019-Baby RSA

题目描述

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import binascii
from data import e1,e2,p,q1p,q1q,hint,flag

n = [20129615352491765499340112943188317180548761597861300847305827141510465619670536844634558246439230371658836928103063432870245707180355907194284861510906071265352409579441048101084995923962148527097370705452070577098780246282820065573711015664291991372085157016901209114191068574208680397710042842835940428451949500607613634682684113208766694028789275748528254287705759528498986306494267817198340658241873024800336013946294891687591013414935237821291805123285905335762719823771647853378892868896078424572232934360940672962436849523915563328779942134504499568866135266628078485232098208237036724121481835035731201383423L, 31221650155627849964466413749414700613823841060149524451234901677160009099014018926581094879840097248543411980533066831976617023676225625067854003317018794041723612556008471579060428898117790587991055681380408263382761841625714415879087478072771968160384909919958010983669368360788505288855946124159513118847747998656422521414980295212646675850690937883764000571667574381419144372824211798018586804674824564606122592483286575800685232128273820087791811663878057827386379787882962763290066072231248814920468264741654086011072638211075445447843691049847262485759393290853117072868406861840793895816215956869523289231421L, 29944537515397953361520922774124192605524711306753835303703478890414163510777460559798334313021216389356251874917792007638299225821018849648520673813786772452822809546571129816310207232883239771324122884804993418958309460009406342872173189008449237959577469114158991202433476710581356243815713762802478454390273808377430685157110095496727966308001254107517967559384019734279861840997239176254236069001453544559786063915970071130087811123912044312219535513880663913831358790376650439083660611831156205113873793106880255882114422025746986403355066996567909581710647746463994280444700922867397754748628425967488232530303L, 25703437855600135215185778453583925446912731661604054184163883272265503323016295700357253105301146726667897497435532579974951478354570415554221401778536104737296154316056314039449116386494323668483749833147800557403368489542273169489080222009368903993658498263905567516798684211462607069796613434661148186901892016282065916190920443378756167250809872483501712225782004396969996983057423942607174314132598421269169722518224478248836881076484639837343079324636997145199835034833367743079935361276149990997875905313642775214486046381368619638551892292787783137622261433528915269333426768947358552919740901860982679180791L]
c = [19131432661217908470262338421299691998526157790583544156741981238822158563988520225986915234570037383888112724408392918113942721994125505014727545946133307329781747600302829588248042922635714391033431930411180545085316438084317927348705241927570432757892985091396044950085462429575440060652967253845041398399648442340042970814415571904057667028157512971079384601724816308078631844480110201787343583073815186771790477712040051157180318804422120472007636722063989315320863580631330647116993819777750684150950416298085261478841177681677867236865666207391847046483954029213495373613490690687473081930148461830425717614569L, 15341898433226638235160072029875733826956799982958107910250055958334922460202554924743144122170018355117452459472017133614642242411479849369061482860570279863692425621526056862808425135267608544855833358314071200687340442512856575278712986641573012456729402660597339609443771145347181268285050728925993518704899005416187250003304581230701444705157412790787027926810710998646191467130550713600765898234392350153965811595060656753711278308005193370936296124790772689433773414703645703910742193898471800081321469055211709339846392500706523670145259024267858368216902176489814789679472227343363035428541915118378163012031L, 18715065071648040017967211297231106538139985087685358555650567057715550586464814763683688299037897182845007578571401359061213777645114414642903077003568155508465819628553747173244235936586812445440095450755154357646737087071605811984163416590278352605433362327949048243722556262979909488202442530307505819371594747936223835233586945423522256938701002370646382097846105014981763307729234675737702252155130837154876831885888669150418885088089324534892506199724486783446267336789872782137895552509353583305880144947714110009893134162185382309992604435664777436197587312317224862723813510974493087450281755452428746194446L, 2282284561224858293138480447463319262474918847630148770112472703128549032592187797289965592615199709857879008271766433462032328498580340968871260189669707518557157836592424973257334362931639831072584824103123486522582531666152363874396482744561758133655406410364442174983227005501860927820871260711861008830120617056883514525798709601744088135999465598338635794275123149165498933580159945032363880613524921913023341209439657145962332213468573402863796920571812418200814817086234262280338221161622789516829363805084715652121739036183264026120868756523770196284142271849879003202190966150390061195469351716819539183797L]
f=lambda m,e,n,c:pow(m,e,n)==c
assert(sum(map(f,[p]*4,[4]*4,n,c))==4)

ee1 = 42
ee2 = 3
ce1 = 45722651786340123946960815003059322528810481841378247280642868553607692149509126962872583037142461398806689489141741494974836882341505234255325683219092163052843461632338442529011502378931140356111756932712822516814023166068902569458299933391973504078898958921809723346229893913662577294963528318424676803942288386430172430880307619748186863890050113934573820505570928109017842647598266634344447182347849367714564686341871007505886728393751147033556889217604647355628557502208364412269944908011305064122941446516990168924709684092200183860653173856272384
ce2 = 13908468332333567158469136439932325992349696889129103935400760239319454409539725389747059213835238373047899198211128689374049729578146875309231962936554403287882999967840346216695208424582739777034261079550395918048421086843927009452479936045850799096750074359160775182238980989229190157551197830879877097703347301072427149474991803868325769967332356950863518504965486565464059770451458557744949735282131727956056279292800694203866167270268988437389945703117070604488999247750139568614939965885211276821987586882908159585863514561191905040244967655444219603287214405014887994238259270716355378069726760953320025828158
tmp = 864078778078609835167779565982540757684070450697854309005171742813414963447462554999012718960925081621571487444725528982424037419052194840720949809891134854871222612682162490991065015935449289960707882463387
n = 15911581555796798614711625288508309704791837516232122410440958830726078821069050404012820896260071751380436992710638364294658173571101596931605797509712839622479368850251206419748090059752427303611760004621378226431226983665746837779056271530181865648115862947527212787824629516204832313026456390047768174765687040950636530480549014401279054346098030395100387004111574278813749630986724706263655166289586230453975953773791945408589484679371854113457758157492241225180907090235116325034822993748409011554673180494306003272836905082473475046277554085737627846557240367696214081276345071055578169299060706794192776825039
assert(pow(e1,ee1,n)==ce1)
assert(pow(e2+tmp,ee2,n)==ce2)

e = 46531
n = 16278524034278364842964386062476113517067911891699789991355982121084973951738324063305190630865511554888330215827724887964565979607808294168282995825864982603759381323048907814961279012375346497781046417204954101076457350988751188332353062731641153547102721113593787978587135707313755661153376485647168543680503160420091693269984008764444291289486805840439906620313162344057956594836197521501755378387944609246120662335790110901623740990451586621846212047950084207251595169141015645449217847180683357626383565631317253913942886396494396189837432429078251573229378917400841832190737518763297323901586866664595327850603
c = 14992132140996160330967307558503117255626925777426611978518339050671013041490724616892634911030918360867974894371539160853827180596100892180735770688723270765387697604426715670445270819626709364566478781273676115921657967761494619448095207169386364541164659123273236874649888236433399127407801843412677293516986398190165291102109310458304626261648346825196743539220198199366711858135271877662410355585767124059539217274691606825103355310348607611233052725805236763220343249873849646219850954945346791015858261715967952461021650307307454434510851869862964236227932964442289459508441345652423088404453536608812799355469
hint=int(binascii.hexlify(hint),16)
assert(q1p*q1q==n)
assert(q1p<q1q)
assert(c==pow(hint,e,n))

flag=int(binascii.hexlify(flag),16)
q1=q1p
q2 = 114401188227479584680884046151299704656920536168767132916589182357583461053336386996123783294932566567773695426689447410311969456458574731187512974868297092638677515283584994416382872450167046416573472658841627690987228528798356894803559278308702635288537653192098514966089168123710854679638671424978221959513
c1 = 262739975753930281690942784321252339035906196846340713237510382364557685379543498765074448825799342194332681181129770046075018122033421983227887719610112028230603166527303021036386350781414447347150383783816869784006598225583375458609586450854602862569022571672049158809874763812834044257419199631217527367046624888837755311215081173386523806086783266198390289097231168172692326653657393522561741947951887577156666663584249108899327053951891486355179939770150550995812478327735917006194574412518819299303783243886962455399783601229227718787081785391010424030509937403600351414176138124705168002288620664809270046124
c2 = 7395591129228876649030819616685821899204832684995757724924450812977470787822266387122334722132760470911599176362617225218345404468270014548817267727669872896838106451520392806497466576907063295603746660003188440170919490157250829308173310715318925771643105064882620746171266499859049038016902162599261409050907140823352990750298239508355767238575709803167676810456559665476121149766947851911064706646506705397091626648713684511780456955453552020460909638016134124590438425738826828694773960514221910109473941451471431637903182205738738109429736425025621308300895473186381826756650667842656050416299166317372707709596
assert(c1==pow(flag,e1,p*q1))
assert(c2==pow(flag,e2,p*q2))

解题思路

还是考这一类型的,无非就是多套了几层,想要求flag,就要知道e1,e2,q1p,p,想要求e1和e2,看这一步

1
2
3
4
5
6
7
8
ee1 = 42
ee2 = 3
ce1 = 45722651786340123946960815003059322528810481841378247280642868553607692149509126962872583037142461398806689489141741494974836882341505234255325683219092163052843461632338442529011502378931140356111756932712822516814023166068902569458299933391973504078898958921809723346229893913662577294963528318424676803942288386430172430880307619748186863890050113934573820505570928109017842647598266634344447182347849367714564686341871007505886728393751147033556889217604647355628557502208364412269944908011305064122941446516990168924709684092200183860653173856272384
ce2 = 13908468332333567158469136439932325992349696889129103935400760239319454409539725389747059213835238373047899198211128689374049729578146875309231962936554403287882999967840346216695208424582739777034261079550395918048421086843927009452479936045850799096750074359160775182238980989229190157551197830879877097703347301072427149474991803868325769967332356950863518504965486565464059770451458557744949735282131727956056279292800694203866167270268988437389945703117070604488999247750139568614939965885211276821987586882908159585863514561191905040244967655444219603287214405014887994238259270716355378069726760953320025828158
tmp = 864078778078609835167779565982540757684070450697854309005171742813414963447462554999012718960925081621571487444725528982424037419052194840720949809891134854871222612682162490991065015935449289960707882463387
n = 15911581555796798614711625288508309704791837516232122410440958830726078821069050404012820896260071751380436992710638364294658173571101596931605797509712839622479368850251206419748090059752427303611760004621378226431226983665746837779056271530181865648115862947527212787824629516204832313026456390047768174765687040950636530480549014401279054346098030395100387004111574278813749630986724706263655166289586230453975953773791945408589484679371854113457758157492241225180907090235116325034822993748409011554673180494306003272836905082473475046277554085737627846557240367696214081276345071055578169299060706794192776825039
assert(pow(e1,ee1,n)==ce1)
assert(pow(e2+tmp,ee2,n)==ce2)

e2加了一个padding,然后e=3可以用小指数解法,解出来减去tmp,得到

1
e2 = 381791429275130

e1,和e2来个共模吧,我这里创造$e_1^{42}\ mod\ n$,相当于将ce1再做14次方模n,不知道可不可以

1
e1 = 184248803833368144507527482158254753456102436059792328559167056890008204564668583544316791778931084172047297608264133909324009314707553896235635211639233133607363861712312892361118629527362064961787009695248597106804395627805255359474989451093529378647565056831703141799794943273776382312947143190802046158174097138203112776712258154475273727098422965989978011736787396669332311941508114626948324330803438970382219225484642872929809644529306909820478119024559071046283253694826736959026215034831382526368076042757610908885320508141057588387594673572835966476324777431647490645334325605016262755417205130618921341925

e1有这么大

接下来求flag那一层的n了

看第一个

1
2
3
4
n = [20129615352491765499340112943188317180548761597861300847305827141510465619670536844634558246439230371658836928103063432870245707180355907194284861510906071265352409579441048101084995923962148527097370705452070577098780246282820065573711015664291991372085157016901209114191068574208680397710042842835940428451949500607613634682684113208766694028789275748528254287705759528498986306494267817198340658241873024800336013946294891687591013414935237821291805123285905335762719823771647853378892868896078424572232934360940672962436849523915563328779942134504499568866135266628078485232098208237036724121481835035731201383423L, 31221650155627849964466413749414700613823841060149524451234901677160009099014018926581094879840097248543411980533066831976617023676225625067854003317018794041723612556008471579060428898117790587991055681380408263382761841625714415879087478072771968160384909919958010983669368360788505288855946124159513118847747998656422521414980295212646675850690937883764000571667574381419144372824211798018586804674824564606122592483286575800685232128273820087791811663878057827386379787882962763290066072231248814920468264741654086011072638211075445447843691049847262485759393290853117072868406861840793895816215956869523289231421L, 29944537515397953361520922774124192605524711306753835303703478890414163510777460559798334313021216389356251874917792007638299225821018849648520673813786772452822809546571129816310207232883239771324122884804993418958309460009406342872173189008449237959577469114158991202433476710581356243815713762802478454390273808377430685157110095496727966308001254107517967559384019734279861840997239176254236069001453544559786063915970071130087811123912044312219535513880663913831358790376650439083660611831156205113873793106880255882114422025746986403355066996567909581710647746463994280444700922867397754748628425967488232530303L, 25703437855600135215185778453583925446912731661604054184163883272265503323016295700357253105301146726667897497435532579974951478354570415554221401778536104737296154316056314039449116386494323668483749833147800557403368489542273169489080222009368903993658498263905567516798684211462607069796613434661148186901892016282065916190920443378756167250809872483501712225782004396969996983057423942607174314132598421269169722518224478248836881076484639837343079324636997145199835034833367743079935361276149990997875905313642775214486046381368619638551892292787783137622261433528915269333426768947358552919740901860982679180791L]
c = [19131432661217908470262338421299691998526157790583544156741981238822158563988520225986915234570037383888112724408392918113942721994125505014727545946133307329781747600302829588248042922635714391033431930411180545085316438084317927348705241927570432757892985091396044950085462429575440060652967253845041398399648442340042970814415571904057667028157512971079384601724816308078631844480110201787343583073815186771790477712040051157180318804422120472007636722063989315320863580631330647116993819777750684150950416298085261478841177681677867236865666207391847046483954029213495373613490690687473081930148461830425717614569L, 15341898433226638235160072029875733826956799982958107910250055958334922460202554924743144122170018355117452459472017133614642242411479849369061482860570279863692425621526056862808425135267608544855833358314071200687340442512856575278712986641573012456729402660597339609443771145347181268285050728925993518704899005416187250003304581230701444705157412790787027926810710998646191467130550713600765898234392350153965811595060656753711278308005193370936296124790772689433773414703645703910742193898471800081321469055211709339846392500706523670145259024267858368216902176489814789679472227343363035428541915118378163012031L, 18715065071648040017967211297231106538139985087685358555650567057715550586464814763683688299037897182845007578571401359061213777645114414642903077003568155508465819628553747173244235936586812445440095450755154357646737087071605811984163416590278352605433362327949048243722556262979909488202442530307505819371594747936223835233586945423522256938701002370646382097846105014981763307729234675737702252155130837154876831885888669150418885088089324534892506199724486783446267336789872782137895552509353583305880144947714110009893134162185382309992604435664777436197587312317224862723813510974493087450281755452428746194446L, 2282284561224858293138480447463319262474918847630148770112472703128549032592187797289965592615199709857879008271766433462032328498580340968871260189669707518557157836592424973257334362931639831072584824103123486522582531666152363874396482744561758133655406410364442174983227005501860927820871260711861008830120617056883514525798709601744088135999465598338635794275123149165498933580159945032363880613524921913023341209439657145962332213468573402863796920571812418200814817086234262280338221161622789516829363805084715652121739036183264026120868756523770196284142271849879003202190966150390061195469351716819539183797L]
f = lambda m, e, n, c:pow(m, e, n) == c
assert(sum(map(f, [p]*4, [4]*4, n, c)) == 4)

e=4,各种方法试过了,不太行。麻了呀,瞟了一眼WP,这不是四个同余式吗?直接crt一梭子,最后别忘了开个方

1
p = 109935857933867829728985398563235455481120300859311421762540858762721955038310117609456763338082237907005937380873151279351831600225270995344096532750271070807051984097524900957809427861441436796934012393707770012556604479065826879107677002380580866325868240270494148512743861326447181476633546419262340100453

然后还有一个hint没求出来,对于那个n,factordb好分。求出来hint

1
orz...you.found.me.but.sorry.no.hint...keep.on.and.enjoy.it!

没事,我们得到了q1p和q1q;接下来有两条思路,一是通过e1这条,因为求得e1很大,但是感觉e1求出来有问题,而且也不满足Wiener和boneh_durfee的两个条件,所以暂时没有思路;二是通过e2这条路,因为e2分解得到

1
2 * 5 * 7 * 89 * 643 * 1063 * 89659

可以采取上述有限域开方的算法。经检验,将e2去掉70这个因子时,可以求出d,那么接下里只要求
$$
c=m^{70}\ mod\ n\notag
$$
脚本如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from Crypto.Util.number import  *

p = 109935857933867829728985398563235455481120300859311421762540858762721955038310117609456763338082237907005937380873151279351831600225270995344096532750271070807051984097524900957809427861441436796934012393707770012556604479065826879107677002380580866325868240270494148512743861326447181476633546419262340100453
q = 114401188227479584680884046151299704656920536168767132916589182357583461053336386996123783294932566567773695426689447410311969456458574731187512974868297092638677515283584994416382872450167046416573472658841627690987228528798356894803559278308702635288537653192098514966089168123710854679638671424978221959513
n = p*q
c = 8402626954844267019257189770827713712301490385606317353247232080660987949790497828588344121360142819597920380810717864248013962140671332736621869364023836966456292451288222487046361422315265333166292074987991328815414597857592078828853150603264183026137947540857054168476824895430715316542444821408894519825575271615168669882328867741339887771856046583079650726850387166574542239755300888839688437954412884568638812994672874904316709465173012849600200303575595413035671196508007653924536244993486097327630306519310746591152593249484415622597310848136958926253928859462221721082363622430393640647507855276596098618932
e= 14


R.<x> = Zmod(p)[]
f = x ^ e - c
f = f.monic()
res1 = f.roots()


R.<x> = Zmod(q)[]
f = x ^e - c
f = f.monic()
res2 = f.roots()
m=[]
for i in res1:
for j in res2:
m.append(CRT(int(i[0]),int(j[0]),p,q))
e = 5

for C in m:
R.<x> = Zmod(p)[]
f = x ^ e - C
f = f.monic()
res1 = f.roots()


R.<x> = Zmod(q)[]
f = x ^e - C
f = f.monic()
res2 = f.roots()

for i in res1:
for j in res2:
M=CRT(int(i[0]),int(j[0]),p,q)
flag = long_to_bytes(M)
if flag.startswith(b'de1ctf'):
print(long_to_bytes(M))

跑了有一会出来

1
de1ctf{9b10a98b-71bb-4bdf-a6ff-f319943de21f}

最后我检查了下别的师傅的WP,发现e1这么做确实有问题,la佬也说了共模攻击,e之间要互素的

De1CTF2019-BabyRSA共模攻击

正确的做法,我没想到竟然可以iroot,运用小指数的攻击,很快就可以出来

1
e1 = 15218928658178

0ctf 2016 - RSA?

题目描述

RSA的文件操作

得到的数字如下

1
2
n = 0x2CAA9C09DC1061E507E5B7F39DDE3455FCFE127A2C69B621C83FD9D3D3EAA3AAC42147CD7188C53
e = 3

解题思路

n这么短,e=3,狂喜;n用factordb分解得到三个素数

1
2
3
p = 26440615366395242196516853423447
q = 27038194053540661979045656526063
r = 32581479300404876772405716877547

然后由于上面有提示,是这一类型的题目,所以直接用有有限域开方了,稍微改了下脚本

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from Crypto.Util.number import *
from gmpy2 import *

c = 2485360255306619684345131431867350432205477625621366642887752720125176463993839766742234027524
n = 0x2CAA9C09DC1061E507E5B7F39DDE3455FCFE127A2C69B621C83FD9D3D3EAA3AAC42147CD7188C53
p = 26440615366395242196516853423447
q = 27038194053540661979045656526063
r = 32581479300404876772405716877547
e = 3

R.<x> = Zmod(p)[]
f = x ^ e - c
f = f.monic()
res1 = f.roots()

R.<x> = Zmod(q)[]
f = x ^ e - c
f = f.monic()
res2 = f.roots()

R.<x> = Zmod(r)[]
f = x ^ e - c
f = f.monic()
res3 = f.roots()


for i in res1:
for j in res2:
for k in res3:
# 普普通通中国剩余定理
m = crt([int(i[0]),int(j[0]),int(k[0])],[p,q,r])
flag = long_to_bytes(m)
print(flag)

得到flag

1
0ctf{HahA!Thi5_1s_n0T_rSa~}